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Abstract—The subject of the investigation is the distribution of stress, displacement and plastic
strain in a rotating shrink fit, the hub material of which undergoes plastic deformation with constant
stress up to a certain plastic strain and lincar hardening for larger strain.

INTRODUCTION

Shrink fits are applied widely in mechanical engineering since they transmit high moments
at low production costs. To better utilize the hub material, plastic deformation of the hub
is admitted frequently. The investigation of the elastic-plastic stress distribution was started
in 1944 by Lundberg[1]. His calculation is based on von Mises’ yield criterion in connection
with Hecky’s deformation theory. Unfortunately, the application of Lundberg’s results is
rather complicated. An exact solution of the elastic—plastic shrink fit problem based on
Tresca’s yield criterion and the associated flow rule was derived by Kollmann for shrink
fits at rest[2] and for rotating shrink fits[3]. As done by most investigators, he used a circular
disk included in an annulus or two annuli as a model for the shrink fit. Later on, Kollmann’s
results were generalized to elastic—plastic materials with linear hardening[4, 5]. Further
progress was made recently, when it was shown that hub material with an arbitrary non-
linear hardening law can be taken into account with very little numerical calculation[6, 7].
In this paper, the new results are applied to a hub material with perfectly plastic behaviour
up to a certain plastic strain and linear hardening for larger strain. The inclusion is a circular
disk (Fig. 1). Of course, this problem can also be solved by modifying the derivation in use
hitherto.

BASIC EQUATIONS

In the following, the basic equations of the problem are compiled[6, 7). Provided that,
as a consequence of the inequalities ¢, < 0 and g, > 0, the flow rule in the entire plastic

region of the hub read deP/def = —1 and def = 0, the displacement in inclusion and hub
is given by
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Fig. 1. Shrink fit geometry prior to assemblage.
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C'=0, CH = Eai 2)

for the inclusion (I) and hub (H), respectively. In these relations, i is the interference and
o the angular speed.

The stresses in the inclusion and in the elastic part of the hub near the edge have the
forms(8]

A
i B—3(3+v)pw’r? 3)

A
G =3+ B—1{(1+3v)pw*ri. (4)
The plastic strains in the entire plastic region of the hub adjacent to the interface read
Eai
Eep = —EeP = —oy+£(1—v)pw2r2+7‘:£ (5)

where the yield stress, oy, grows in some manner with the equivalent plastic strain, . In
the present case, consideration of the increment of plastic work and the yield condition

64—0, = Oy ©)

leads to e = €. The strains are presumed infinitesimal ; the plastic strain is the difference
of the total strain and its elastic part.

Inserting the yield condition in the equation of motion, one obtains after integration
the stresses

6, = J? dr—3pw?r*+D (7

Gy = 0,+0y. (8)

Independently of the hardening law, at the elastic-plastic border, r = z, the yield stress
equals the initial yield limit, ,. Therewith, eqn (5) yields

2, L 1=/(1=(1=-9Q%)
z7=2 (1-v&? ®)

where I: = Eai/(s,b%) denotes non-dimensional interference, {}*: = pw?b?/g, non-dimen-
sional angular speed and Z: = z/b the non-dimensional elastic-plastic border radius with
a and b as inner and outer radius of the hub, respectively. For shrink fits at rest, eqn (9)
simplifies to

VAREDE (10)

THE PLASTIC REGION

In the problem under consideration, perfectly plastic behaviour is assumed up to a
characteristic plastic strain, e} = ¢, and linear hardening for larger strain
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Fig. 2. Partially plasticized hub with inner part © and outer part ® of the plastic region.
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where 7 is the hardening parameter. With ¢, = ¢, and &} = &, eqn (5) delivers the internal
border radius, r = y, between the two parts of the plastic region

Eo+1=/((Go+1)*~ (1 —0)Q’])

Y?=2 T (12)

with & : = Egg/a, and Y: = y/b (Fig. 2). For shrink fits at rest, eqn (12) is reduced to

I
2
Y= (13)

For y < r < z, one obtains from eqns (7) and (8) together with eqn (11) the well-known
stresses

o, = 0, log l£> —ipwir*4+D° (14)

Oy = 0,+0 (15)

in the outer part (o) of the plastic region.
Inserting the equivalent plastic strain, €2, which equals the circumferential plastic

strain, eqn (5), into the hardening law, eqn (11), and solving for the yield stress, o, one
obtains

- 1 - HI
ay=T—;—ﬁ[l—Hso+%(l-‘V)H02X2+F-] (16)

with the normalized hardening parameter H: = o¢1/E, the non-dimensional yield stress
Gy: = 6y/oy and the non-dimensional radius X = r/b.
Now, eqns (7) and (8) yield the stresses

1

, =]—+—]-{{(I—H€0) log X—3i[4+(3+WHIQ X —%I;—f}ﬂj‘ an

O'-g=6,+6y (18)

in the inner part (i), a < r < y, of the plastic region.

CONDITIONS AND RESULTS

The starting point is the elastic region of the hub near the edge. Forming the cir-
cumferential strain, &, with the help of Hooke’s law and expressions (3) and (4) on the one
hand and using eqn (1) on the other hand, one finds by comparison 4 = C/2, i.e.

SAS 23:9-8
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A'=0, A" = {Eai (19)

Therewith, the condition of vanishing radial stress at the free edge of the hub yields

B" = {3+ v)pw?b’ +§E%.

(20)
A" and B" agree with the constants contained in the expressions for stress and displacement
of the hub for unrestricted elastic behaviour. It is well known that the occurrence of plastic
flow at the interface does not influence the distribution of stress and displacement in the
elastic part of the hub[4, 5.

The solution of the problem is completed by adapting, with the help of the condition
of continuity of radial stress, the outer part of the plastic region to the elastic region, the
inner part of the plastic region to the outer part and, finally, the inclusion to the inner part
of the plastic region of the hub. The system of equations is completely uncoupled; each
equation contains a single unknown.

In non-dimensional form, as used in the stresses normalized by ¢, the results are

5°:=§f= —log Z+§Qz{3+y+{§-\,»}22}—~§f(~}7— 1) 21
Go Z
D= log%/— ll‘jﬁ“ log Y+§ﬂ’[3+v+(l——v)22 - %i%}fyz]
+$i[3ﬂgﬁ—yl—2—é—2+1} (22)
B”;.—,%‘: iog%]—ﬁ— l;jﬁ" log %+§Q2[3+v+(l—v)22 —%%(HW%»QQ)]

1 H i 1 1

with the radii ratio Q: = a/b.
This solution applies, provided that Z < 1, or

4’ s—iv(l—f) (24)
I—v

and that the radial stress does not become positive inside the plastic region, or

ngi<1 —ﬂf> (25)
34y

and that Y > Q. The shrink fit rotating with supercritical angular speed surpassing the one
given by expression (25) was treated for perfectly plastic hub material in Ref. [9]. The case
of the fully plasticized hub will be dealt with in the next section.

THE SHRINK FIT WITH FULLY PLASTICIZED HUB

The elastic region of the hub is dropped. The condition of vanishing radial stress at
the free edge yields
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Fig. 3. Radial and circumferential stress in the hub after assembiage @, rotating with critical angular
speed @ and circumferential stress after rotation ©.

D° =102, (26)

From the condition of continuity of radial stress, one obtains successively

. 1— HE, wal, Q=wH ] . H 1
Di=logY~— A log Y+1iQ {4——-—-—»1+H Y %I—-——HY @n
and
B'=1lo Y+} log +§Q{ (HY2+Q2)] il—: (—1"—*‘1")
J 1+H 1+H 1+H\Y?  Q°
(28)

The slope of g, at the edge, r = b, may not become negative. This is ensured by the
condition

Q<1 (29)

NUMERICAL RESULTS

Figure 3 shows, for v = 1/3, H = 1,8, = 1, Q = 1/2 and T = 3/4 the stresses ¢, and &,
in the hub due to assemblage, marked by @, the stresses in the hub rotating with the
critical angular speed (? = 51/50 according to expression (25), marked by @, and the
circumferential stress in the hub at rest after rotation, marked by @ . In the elastic part of
the hub, the stresses before and after rotation coincide since, as mentioned already, there
is no influence of plastic flow on the stress distribution in this region. The radial stress in
the final stage lies slightly above the one caused by assemblage ; at the interface the difference
amounts to 0.042. Deceleration is not connected with additional plastic flow{10].
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Fig. 4. Displacement and circumferential plastic strain in the hub after assemblage @ and rotating
with critical angular speed @.

On Fig. 4, for the same parameters, displacement, : = Eu/(o4b), and circumferential
plastic strain, & : = Eef/g,, in the hub is plotted. Again, ® belongs to assemblage and ®
to rotation with critical speed. During deceleration, the plastic strain is not affected any
more. Due to plastic flow during acceleration, the displacement in the previously plastic
region of the hub at rest after rotation is slightly higher than the displacement caused by
assemblage. At the interface, the difference is 0.014. In the elastic region, the displacement
after assemblage and after rotation agrees.
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